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In [1,21 Arutiunian examines the plane contact problem for the case of a 

material which strain-hardens according to a power-law and which possesses 

the property of nonlinear creep of’the hereditary type. Using the ideas 

put forward in [1,2], the present paper considers the three-dimensional 

contact problem on the basis of the same assumptions concerning the pro- 

perties of the material. 

1. Concentrated force applied to the boundary of a half- 
space with power-law strain-hardening of the material. Suppose 

tllat a concentrated force P is applied normally to the boundary of a 

half-space z > 0. 

Using a system of spherical coordinates (see Figure), we see that in 

view of the axial synrnetry of the probl.em 

and the nonzero displacements uR, u8, the strains Ed, Ed, 

stresses aR, a~, ~~0, a ~ are irulependent of 9. 

We shall assume that the material is incompressible 

and that the strain-llardening is Riven by 

~~0, Ed and the 

(1.1) 

(I .2) 

- 1..,1)‘) 1 + 4e ,:,,z 
> 
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Here r is the intensity of shear strain; cr. .’ is the stress deviator, 

A and p are constants of the material, where 6°C p Q 1. 

The stresses must satisfy the equations of 

equilibrium 

They must also satisfy the boundary con- 

di tions 

(1.5) 

and must be statically equivalent to the force P 

2s r.:! 

s s 
dip (~5~ cos e -- zRB sin 0) R2 sin 0 ~$0 -I- P = 0 

I, n 

‘Ike strains must satisfy the compatibility conditions [3] 

(1.6) 

The relation between the displacements is given by the formulas 

Note the particular cases of the solution of this problem. If p = 1 

(an elastic incompressible material) II31 

( I .!I) 
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P cos tj 1 
ER =-- --‘nC?, Eg = &, = -7 ER, 

t 
&RB = 0 

I’ cos e P sin0 
%I = - =K 

where G is the shear modulus. If p = 2/3 the solution assumes the form 

L41 

1 
&g := ET = - T ER, &R,, = 0 (1. to) 

It can easily be shown that a solution in the form 

If- (e) 
CR = I(“> 611 = TRC, = 0, = 0 

exists only for these values of p. 

It follows from conditions (1.6) &at the stresses aR and 7Re have a 

singularity l/R2 at R = 0. However, condition (1.6) tells us nothing of 

the behavior of the stresses a0 and o 
'p 

at L? = 0. 

We make the following assumption. We assume that the variables R and 

8 in the expressions for the Ftresses are separable. This assumption is 

prompted by the homogeneity of each of the groups of Equations (l.l), 

(1.2), (1.3), (1.4) and (1.7) h' 1 w 1~1 must be satisfied. Finally, it is 
clear that the assumption made is valid for p = 1 and p = 2/3. Then from 

condition (1.6) and from the differential equations of equilibrium, it 

follows that the stresses. have the form 

3lj Fij Cfl) I<~’ (1 11) 
Then, on the basis of Equations (1.2) 

Eij = cij (rJ) Il_"'l, ,,L _:; 1 
.\ (1.12) 

Ye take the displacements in the form 

U,( ~~ E (0) H-wl, [ld = q (0) ]{--‘l”‘l-l (1.13) 

The condition of incompressibility (1.1) enables us to express t(0) 

in terms of q(O) 

E(O)= cot fig(U)-;- C'(O), 5 (0) -g$ (1.14) 
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We shall now consider the case when p # 2/3. (If p = 2/3 t!le solution 

is given by Formulas (1.10.) The displacements (1.13) to (1.14) corre- 

spond to “strains” E ij(O) given by 

We will show that,the expressions for the strains (1.12) for values 

of ~~~(0) given by (1.15) (and consequently the expressions for the dis- 

placements (1.13) to (1.1.4) as well) are general expressions, provided 

the variables are separable and the material is incompressible. To do so 

we substitute (1.12) into conditions (1.7). After eliminating Ed Ly 

means of the condition of incompressibility, we obtain 

The system of Equations (1.16) is equivalent to 

It can be verified that the following identities hold: 

The system of equations Yi = 0 (i = 1, 2, 3) is therefore equivalent 

to the equation Y, = 0. Consequently, the system (1.16) is equivalent to 

the equations Y, = 0 and X, = 0. In expanded form the equation Y, = 0 

has the form 

2(m - 2) cotfle, + [2( m - 1) -_I-- (2m - 1)cot” 01 OG -~- cottiC,,,’ 

-- [I -1~ (2U- l)cot’O]Co 0 (1.17) 

Integrating (1.17) and making use of the equation .Y, = 0, ‘we fin;1 

that 
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c’t) = C cos 0 sirx--2nLi 10 -t 2 (m - 1) ev - (2m - 1) (2m - 3) cm 8 sin-2t11S10 X 

0 

X s e, sinZm-2 WI 
0 (1.18) 

Zen0 =. __ C ~0s 20 sin--Zl~~fj + e,’ _ (2m - 3) cotee, + (2~2 - 1) (2m - 3) X 

x cos 28 sin-z7’10 [ eV .5in2m-2 &J% 
0 

where C is a constant ot integration. 

Now consider the third equation of (1.15) as an equation in i. Solv- 

ing this equation and eliminating 5 in the second and fourth equations 

of (1.15) by expressing it in terms of e 
9’ 

we obtain expressions for ee 

and eR8 identical with (1.18). This substantiates the statement made 

above concerning the generality of Formulas (1.15) and (1.13) to (1.14). 

\Ve shall define sij(0) and ~(0) as quantities which depend only on 0 

in the expressions for the stress deviator o. .’ and the mean pressure u 
11 

a;j’ = sij (0) R-‘, G = s (0) R-” <1.19) 

Equations (1.2) can then be written in the form 

Sij = Agp-‘eij (1.20) 

where 
(1.22) 

h” 2 = $ [(eR - Q)~ + (e. - e,)” + (e, - eR)2] + ~c%R~~, r = g (0) R-2m 

With the aid of (1.19) we can write the equations of equilibrium 

(1.3), (1.4) in the form 

sRo’ + cot esRe - (se + s,) - 2.7 = 0 
s’ + &j’ + SR,?, + cot0 (.?‘j - SW) == 0 

(I.221 

‘Ihe first of the equations expresses the “mean pressure” s in terms 

of the “components of the stress deviator”s ij. Eliminating s from the 
second equation, we obtain an equation which contains only sij. 

SR,jn + iOt UsnO’ + (‘I -Cot2 0) .yRo + .%j’ - .cP’ + 2 Cot 0 (so -so) = 0 (1.23) 

Substituting Formulas (1.20) into Equation (1.23) yields 

$” --I [CRRR + Cot fleR0' + (1 -Cot’ 0) eRO _t e0’ -- erp’ + 2 Cot (f (e@ - e,)] + 

f (IL _- 1) g”--3 (2f?‘eR,,’ + [(p --- 2) ,$‘2 -I- ,ggN + Cot flgg’] eRO + 

-I- gg’ (e. -- Pi)} _ 0 (1 .X) 
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If we now substitute into (1.24) values of e.. given by (1.15) we ob- 

tain a nonlinear ordinary differential equation'tf the fourth order in 

the function i(O) 

ugz=o (1.2s: 

!IerefJ denotes the appropriate differential operator. The boundary con- 

ditions (1.5) mean that 

Eliminating s with t!ie aid of the first equation of (1.?2), we obtain 

sR,j = 6, SRQ' -j sg - SW := 0 at f3 == ljzn (1.27) 

or, after substituting Formulas (1.20) 

eR(j = 0, CR0 ’ + eR -- ps -- 0 at f3-iizn (1.28) 

If we now substitute values of e.. given by (1.15) into (1.25) we o!,- 

tain the following boundary conditi& for t!le function (i(0): 

(1.2U) 

VI, 
c 11 + 2m (2m -- 3)] j = 0, 5"' _ 2 (‘3m2 _ 5m-.i--4)<‘-0 at ez-'lCn 

Also, from the condition that ~0 = 0 when 0 = 0 we have that 

Kth the aid of the first equation of (1.22) condition (1.6) can be 

reduced to the form 

X.,2 

s 
[sEesin 0 + 3 (so + s,) ~0s 01 sin 0&l = $ (1.33) 

0 

If we substitute (1.20) and (1.15) into this expression we obtain the 

condition 

-a 

IT [',I 
\ 

@-I (1.X 1 

0 

Thus the problem has been reduced to one of finding the function i(0) 

which satisfies the ordinary fourth-order differential eqation (1.25) 

and the conditions (1.29), (1.30) and (1.12). 

For ~1 = 1 Equation (1 .2S) is linear and easily integrable. In this 

case conditions (1.29), (1.30) and (1.32) select from the :~cneral solution 
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the function j(O) corresponding to (1.9). If JA # 1, Equation (1.25) be- 

comes an extremely complex nonlinear differential equation which it was 

found impossible to integrate. However, for the present purposes it will 

be sufficient to carry out an analysis of the dependence of the solution 

to the problem (1.25), (1.29), (1.30), (1.32) on parameters. 

We note that the left-hand side of (1.25) represents a homogeneous 

function of order n in 5, <‘, . . . , 5 . ‘I” ‘lhe boundary conditions are also 

homogeneous, whilst in equalities (1.25), (1.29) and (1.30)) the only 

parameter of the problem to appear is P. lherefore, if i0 = ;,(0, cl) is 

some particular solution of the problem (1.25), (1.29), (1.X0), then 

< =BL,, where R is an arbitrary constant, is also a solution of this 

problem. ‘Ihe constant u’ can be found from condition (1.32) 

B zz= D-“’ (IL)($)“‘, D(p) = i’ r5,l 

Consequently, the displacements are given by 

uR = D-‘” (y)lcotfJlo (0, ~4 -I- 50’ (f4 P)I ($“R-2”L1 
(1.33) 

u,, = (2m - 3) D-” (CL) 5, (0, PL) ($$+‘+1 

‘Ihe settlement of points on the boundary of the half-space is expressed 

by 

w (G Y) -= - ue IHL= ” = c (IL) (f)v’L~-2m+1’ r= I/J;“+y2 (1.34) 2 

JIere C(P) is a constant dependent only on ~1, Expression (1.34) can be 

rewritten as 

Ac--rw~ = p 
p2-P 

(1.35) 

2. Penetration of a die into a half-space with power-law 
strain-hardening. Suppose that.a rigid die is pressed without friction 

into the half-space z > 0. R shall assume that the properties of the 

material are defined by Equations (1.1) and (1.2). The problem is to 

find the settlement of the die and the pressure distribution over the 

area of contact S. The settlement of points on the area of contact is 

w (IC, y) = a5 -t 8!/ -I- w. - ‘P (5, ?/I (2-l) 

where z = - 9(x, y) is the equation of the surface of the die at the 
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moment of contact with the half-space, ax + py + wO is the unknown rigid- 
body displacement. 

In order to derive an approximate solution to this problem we use the 
method suggested by Arutiunian [ll and apply the principle of addition 
of “generalized displacements” @. Then, denoting the pressure on the 
area of contact by p(n, y) and making use of Formula (1.35), we obtain 
for p(x, y) an integral equation* analogous to the equation in the cor- 
responding plane prbblem [I] 

ss P (“19 Yd hdY1 = AC-PWP (x, y) 
(S) (1/h -d2 + (Y - Yd2r" 

(2.2) 

in which the function w(x, y) is given by (2.1). In order to find the 
constants a, I3 and wO we have the equations of equilibrium of the die 

ss ~xdy = P 
(‘3 

ss py dxdy =Mm 1s pxdxdy = -_,If, 
(a 3, 

(2.3) 

(2.4) 

where P, Mz, MY are the given force and moment components applied to the 
die. If the die has a smooth shape, then in order to determine the value 

of 
Of 

p, 

S we apply the condition that the pressure vanishes at the boundary 
the area S. 

If an axially symmetrical die is pressed into a half-space by a force 
then the function w(x, y) in (2.2) is replaced by the function 

w(r) = w. - cp (r) (2.5) 

and only (2.3) is retained from conditions (2.3) and (2.4). 

Equation (2.2) is a linear Fredholm integral equation of the first 
kind with kernel having a point of non-essential singularity (1 d 2 - 
V < 2). 

It is interesting to note that an equation analogous to (2.2) is 

i, If the area of contact of two bodies with different constants Al, AZ! 

and the same power u is sufficiently small the absolute term in Equa- 

tion (2.2) is replaced by the function 

[c (AI+ $- &-m)]-P [ax -i- py -:- Wg - vi (2, y) - ‘pz (I, y)l’L 

where t = 9, (x, y), I = - LQ(X, y) are the equations of the surfaces 

of the bodies at the moment of contact. 



Penetration of rigid dies into a half-space 725 

obtained in the problem of the penetration of a rigid die into a non- 

homogeneous elastic half-space with a Young’s modulus 

E = E,,z”, n, E,, = const P<n<l) 

and with a Poisson’s ratio v = l/(2 + n); in this case [s] 

ss P (~1, ~1) dwh/l = rw (x, Y) (r == const) (2X) 
(s) (1/(x - x1)2 + (Y - Yl)2)1+n 

!laking use of this analogy, we can formulate the following result. 

Suppose that a die with a flat base is pressed into a half-space with a 

force P. ‘lhen the absolute terms in Equations (2.2) and (2.6) are the 

constants Ac%,,~ and yut,,, respectively. ‘!!e define pl(x, y) as the solu- 

tion of Equation (2.2) with an absolute term equal to unity. ‘Ihen the 

pressure under the die in the case of a half-space which strain-hardens 

is given by 

and in the case of a nonhomogeneous elastic half-space (when n = 1 - u), 

bY 

P (57 Y) = VOPl (29 Y> 

If we now eliminate the constants Ac’~w,,~ and yw,, in terms of P with 

the aid of (2.3), then in the case under discussion the laws governing 

the pressure distribution under a die pressing on a strain-hardening half- 

space and m_der the same die pressing on a nonhomogeneous elastic half- 

space (n = 1 - II) are identical. Note, however, that the equations re- 

lating the settlement VI,, with the force P are different. 

In [s] ?ostovtsev has derived a solution to Equation (2.6) for a die 

elliptical in plan with a polynomial absolute term (a generalization of 

Shtaerman’s theorem for a homogeneous elastic material). Ile has also de- 

rived a solution for a circular area of contact. 

Let us consider the penetration of a die with a plane elliptical base 

under the action of a force ?. “laking use of the results of [5] we find 

that 

where b, a are the semi-axes of the ellipse (n < b) 
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($ ZI. 1 - $1 

In particular, for a die with a plane circular base (a being 

radius) 

If p = 1, Formulas (2.7) become the corresponding well-known formulas 

(2.8) 

its 

(2.9) 

for the case of a homogeneous elastic material. Yote that the pressure 

distribution (2.9) is analogous to the pressure distribution in the 

problem of the penetration of a rectangular die under conditions of 

plane deformation [l]. 

In the case of an axially-symmetrical die under the action of a force 

P, we have, on the basis of the results in [S], that 

If the die has a smooth shape, then p(a) = 0 and consequently 

s(a) = 0 (2.12) 

Equation (2.12) establishes the relation between the radius n of the 

area of contact, the penetration of the die w0 and the strain-hardening 

power n. Equation (2.3) gives one further equation relating CZ, zu,,, P, A 

and n. 

Evaluation of the integrals occurring in-(2.10), (2.11) for some dies 

of practical interest such as conical, spherical, parabolic dies is 

difficult in view of the power n of the function w(r) in (2.11). In 

order to facilitate the evaluation of the integrals we make t!le approxi- 

mation of expressing the function f(r) = I?(T) as a polynomial. 

Consider the case of a die with a reasonably smooth shape. '?'e shall 

suppose that the function q(r) has continuous first and second deriva- 

tives within the range [O, 11, where E > n. Then the function f(r) has 
the same property. Consider the function h(t) = f'rJ t), Which is conr 

tinuous within the range [O, ~‘1. 3y the theorem of Jcierstrass we can 

approximate to this function to any degree of accuracy by the 
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polynomial * 

4 (t) = i Uiti 
i=o 

Vie can then approximate to the function f”(r) by means of the poly- 

nomial 
k 

i=o 

which contains only even powers of r. It is then easily seen that the 

polynomials 

k 

Q (‘) = iz (2i + 1;;‘2i + 2) r2i+2 + f’ (‘1 r + wOp 

k (2.13) 

Q’ (r) = x 2* ++I $ f’ (0) 
i=O 

are approximations for. f(r) and f'(r), respectively, to an accuracy pro- 

portional to the accuracy of approximation of the polynomial q(r*) for 

the function f”(r). It can easily be verified that the value of the 

pressure found from these approximations is very close to the true value. 

Substituting (2.13) into (2. ll), we obtain 

bi=l_ i! 

2 (1 - p/2 i- i) (I- p/2 -;- i - 1) . . (1 -p/2 + 1) (1 -p/2) 

jJ(I’) = - 
sin np/2 

a%t’L 
I- (1 -pm 

r (1.5 - p/2) 

4.. ; (2i $;;‘zt’_ 
i=O 

1 ?. 

) f _$y;)* ] 
P 

P2 

where p = r/n, T(n) is the gamma-function. lhe second integral in the 

* For such a polynomial we could take [S] 
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expression for p(r) can he integrated by parts; we have 

and the first integral in the expression for p(r) must be integrated by 

a tabular method. In the case of dies which do not come to a point at 

r = 0, f’(0) = 0 and the term containing the first integral in the ex- 

pression for p(r) disappaars. Condition (2.12) enables us to express the 

radius r;z of the area of contact in terms of the settlement of the die ?uO. 

Condition (2.3) gives 

JJ = AC--P (P,)h (w,,, P) 

Note that the unknown quantity c(v) (constant for a given material) 

appearing in the relation between the force and the settlement of the 

die, can be found from penetration tests with any single die. 

Sometimes penetration tests on solid bodies are used for the exi‘eri- 

mental d~ter~lination of tLe mechanical properties of a material. C’ith the 

aid of such experiments the solutions derived in this paper enable the 

strain-hardening power to be determined. For instance, if values are 

known for the force and settlement for two penetrations of a die with a 

plane circular base, then Formula (2.3) gives the following equation for 

In the case of a cone or sphere, the corresponding 

or the equation 

equation is (2.121, 

Finally, note that the results given above can be applied to the case 

of steady and quasi-steady creep, which is described by the equations of 

the yield theory [7] (assuming incompressibility of the material and a 

power-law relation between the intensity of shear-strain rate and in- 

tensity of shear stress). 

3. Penetration of a die into a half-space with nonsteady 
creep of the material. 'Ye s!lall assume that the creep of an incom- 

pressible material is described by the e\Iuations ;>roposed hy 
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Rabotnov 183 : 

AI’“-’ (t) eij (t) = Gfj’ (t) - S K (t - Z) ~ij’ (T) dT (3.1) 
0 

Here t is the time (for brevity the three-dimensional variables have 

been discarded), aij’ is the stress deviator, f is the intensity of shear 

strain, A and p are constants of the, material (0 < n d l), I<( t - T) is 

the relaxation kernel. * 

If the application of the load is instantaneous, the material at the 

moment t = 0 is governed by Equation (3.1) and behaves as if it were 

subject only to (power-law) strair~-hardening. 

Consider the quasi-statical pro,)lem of a concentrated force P(t) 
applied normally to the boundary of a half-space. Since the operator in 

the right-hand side of (3.1) is linear and homogeneous, and since the 

three-dimensional variables appear in (3.1) as parameters, all the ideas 

of .Section 1 concerning the dependence of the unknowns on the radius R 

still hold and can be applied to the present problem. In addition to the 

angle 0, however, the time t must also be included in the arguments of 

functions 5, e. ., g, se . . 
use of (1.20)) ‘ie obtai; 

Solving Equations (3.1) for aij’ and making 

where N( t - T) is the resolvent of the kernel I(( t - T). 

In order to obtain an equation for the function ;(6, t) we substitute 

Formulas (1.15) into (3.2) and then substitute the resulting expression 

for sij into the differential equation (1.23). Substituting (3.2) into 

(1.23) and taking the. differential operator on the left-hand side of 

Equation (1.23) under the integral sip, we obtain a homogeneous Volterra 

integral equation 

in the function u(@, t) = UC, where U is the differential operator of 

Equation (1.25). It follows from (3.3) that ~(0, t) = 0, i.e. the func- 

tion j(e, t>, satisfies the ordinary differential equation (1.25). 

l Without prejudicing the theory that follows, the kernel K( t - 7) can 

be replaced by the more general form K( t, T), and the lovrer limit of 
integration can be replaced by the constant to. 
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We now substitute (3.2) into the boundary conditions (1.27). In this 
way we obtain two liomogeneous integral equations of the same type as 
(3.3): the first in [$‘-‘eRB]e=.r,,2, the second in [gn” ‘(em + ee .- 
e,)], _-wlz. It follows from these equations that the function !(e, t> 
satisfies the boundary conditions (1.29). The boundary condition (1.30) 
evidently still applies to the case under discussion. Substituting (3.2) 
into condition (1.31) we obtain 

Solving this integral equation for v(t) = Vii] we find that 

‘&US the function ((0, t> satisfies the same differential equation 
(1,251 and- the same boundary conditions (1.29), (1.30) as in the corre- 
sponding problem with strain-hardening which follows a power-law. Condi- 
tion (3.4) differs from (1.32) only in the different value of the right- 
hand side. Note that the time 5 appears in the equation and in the con- 
dition for the function c(O, t) as a parameter. Consequently, the solu- 
tion of the problem of a concentrated force can be found from the solu- 
tion of the problem of Section 1, by replacing the force P by the 
quantity (1 - LJP( t) I 

We proceed now to the problem of the penetration of a rigid die into 
a half-space, the properties of the material of which are described by 
Equations (3.1). We shall assume that there is no friction on the area 
of contact, As in Section 2, applying the principle of superposition of 
the “generalized displacement” vcl, we obtain the following expression 
for determining the pressure under the die: 

Here (St) is the area of contact; the function wfx, y, tf is given by 

(2.11, in which the quantities a, ?, ~;a, determined from the conditions 
(2.3), (2.4), are, in general, functions of time. Equation (3.5) is 
equivalent to t!re followin;; two equations analogous to the corresporkling 
equations in the plane problem t~l : 
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(3.7) 

Equation (3.6) is a Volterra integral 

y occur in this equation as parameters). 

Equation (3.?) is a Fredholm equation 

equation of the second kind (n, 

of the first kind (the variable 

t occurs in (3.7) as a parameter). ITlile constant c(p) can be determine: 

by short-duration penetration test.s with a die. 

Consider t.he penetration into a half-space of a die with a flat Lase 

under the action of a force P(t). In thi s case tjhe area of contact is 

fixed and ?u = luOCI(t) is independent of X, y. Tt follows from (3.6) that 

0 = o,(t) 

is also independent of x, y. 13ut then 

/‘(cc, 7J, t) -,p1(5, !/) -lc-!‘O” (1) (3.9) 

‘!ere p,(x, y) is the solution of Equation (1.7) when the absolute 

term is unity. After eliminating AC -cl~O( t) by expressing it in terms of 
)(t) with the aid of (2.3), we obta.in t!le pressure distribution 

which coincides with the pressure distribution for the case of power-law 

strain--hardening (or for the case of instantaneous penetration). Thus 
for a die with a flat base under the action of a force, creep ilas no 

effect on the law governing the pressure distribution under Liit: ,;ie. 

This result is completely analogous to the corresponding result for tLe 

plane problem [al . Tius, for a Jie with a plane elliptical base the 

pressure distribution is given by the first of Formulas (2.7), in which 

!’ is considered as a known function of time; tILeri in or.Jer to fin,1 the 

relation between the force ? ant: the settlement u,, the quantity ~~~~ in 

tire second of Forl:lulas (2.7) s:iou111 be reF:loced by oO as given !JY (3.3). 

1. Xrutiunian, N. Rh. , Ploskaia kontaktnain zac;acha teorii pl.istichnosti 

so stepennym uI)roctlnenicm materiala (The plane contact problem of 

the tlieory of plasticity with strain-h:trdening of tI’c materi. 



732 A. I. iiurne tsov 

obeying a power-law). IZV. Akad. Nauk Arm. SSR Vol. 13, No. 2, 

1959. 

2. Arutiunian, N. Kh., Ploskaia kontaktnaia zadacha teorii polzuchesti 

(The plane contact problem of the theory of creep). PW Vol. 23. 

No. 5, 1959. 

3. Lur’ e, A. I., Prostranstvennye zadachi teorii upruposti (Three- 

dimensional Problems of the Theory of Elasticity). GITTJ,, 1955. 

4. Hruban, K., The basic problem of d nonlinear and nonhomogeneous half- 

space. Non-Homogeneity in Elasticity and Plasticity. Pergamon Press, 

1959. 

5. Rostovtsev, N.A., nb odnom integral’nom uravnenii v zadache o 

davlenii zhestkogo fundamenta na neodnorodnyi grunt (An integral 

equation encountered in the problem of a rigid foundation bearing 

on nonhomogeneous scil). PM! Vol. 25, No. 1, 1961. 

6. Akhiezer, N. I., Lektsii po teorii approksimatsii (Lectures on the 

Theory of Approximation). Gostekhizdat, 1947. 

7. Kachanov, L. M. , Teoriia polzuchesti (Theory of Creep). Fizmatgiz, 

1960. 

8. Rabotnov, Iu. N., Nekotorye voprosy teorii polzuchesti (Some problems 

of the theory of creep). Vestn. MGO No. 10. 1948. 

Translated by J.K.L. 


