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In [1,2] Arutiunian examines the plane contact problem for the case of a
material which strain-hardens according to a power-law and which possesses
the property of nonlinear creep of the hereditary type. Using the ideas
put forward in [1,2], the present paper considers the three-dimensional
contact problem on the basis of the same assumptions concerning the pro-
perties of the material.

1. Concentrated force applied to the boundary of a half-
space vith power-law strain-hardening of the material. Suppose
that a concentrated force P is applied normally to the boundary of a
hal f-space z > 0.

Using a system of spherical coordinates (see Figure), we see that in
view of the axial symmetry of the problem

u, = a, e = Egp = 1), Tpe = Top = U

and the nonzero displacements.uR, ug, the strains ep, g, €Rer o and the
stresses gp, Og, Tpg, g, are independent of o.

We shall assume thiat the material is incompressible
ep 4ty e, =0 (1.1

and that the strain-hardening is given by (1.2)

5, ::.._II""—'YF;} ( 12 = ~§- (¢ — #0)* = (g0 — £ 4 (8, — )2 + 451:612)
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Here ' is the intensity of shear strain; ci-' 1s the stress deviator,
A and p are constants of the material, where 0'< p <1.

The stresses must satisfy the equations of P
equilibrium L
z
1.3
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They must also satisfy the boundary con-
ditions
Tpe=-0, &y = a4 A== f;- and K ’:‘/r 0 (15)
and must be statically equivalent to the force P
2z k4
Vg § (5r cos 8 — g0 sin0) R2sin0d0 + P =0 (1.6)
0 0
The strains rust satisfy the compatibility conditions [3]
{ e, 200098, 0 ! cot 0 98 2
R TR a0 o &0 g) T Ty TR (E —ea) —
2 (O&py ‘
— R (»—56- -1 &Rg cot 8) =
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B oros — < VgR T Vg —geme =0
The relation between the displacements is given by the formulas
du 1 du u u, cot § Uy,
L B A T = 20T R
R =G BT R Tre BT R R (1-8)

gp . o Moo 1 Oup
R™= 395 7R TR o6

Note the particular cases of the solution of this problem. If p=1
(an elastic incompressible material) [3]

3 P ocosb i
Sk S W R Sp = Tpe = Gp =0 (.
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P cosy
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where G is the shear modulus. If p = 2/3 the solution assumes the form

(4]

P 1
Or = o Sp == Tro = Gp = 0
5 T_/I) L.5 1 1
o= =32V E() e w=e=—gen em=0 (110)
w0735 ( PR
up —=- -50 ° V_Z (ﬂ) 7{‘51 Ug — 0

It can easily be shown that a solution in the form

F (0
GR:7§7)’ GO:TR(.:GQ,:O

exists only for these values of p.

It follows from conditions (1.6) that the stresses op and Th have a
singularity 1/R? at R = 0. llowever, condition (1.6) tells us nothing of
the behavior of the stresses og and % at 1 = 0.

Ve make the following assumption. We assume that the variables R and
8 in the expressions for the stresses are separable. This assumption is
prompted by the liomogeneity of each of the groups of Equations (1.1),
(1.2), (1.3), (1.4) and (1.7) which must be satisfied. Finally, it is
clear that the assumption made is valid for p =1 and u = 2/3. Then from
condition (1.6) and from the differential equations of equilibrium, it
follows that the stresses have the form

5y Fiy ) R: (11

Then, on the basis of Equations (1.2)
ei; = e (0) 1277, m ez — (1.12)

Ve take the displaéements in the form
up = £(0) B,y =) R (1.13)

The condition of incompressibility (1.1) enables us to express £(8)
in terms of n(0)

E(O) = cot0Z (0) -1 (0),  L(U)=— 1y (1.14)
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We shall now consider the case when p # 2/3. (If u = 2/3 the solution
is given by Formulas (1.10.) The displacements (1.13) to (1.14) corre-

" : " :
spond to "strains Eij(e) given by

er = (—2m + 1) (cotf -- L"), g == cotbl 4 2(m — 1) T’
ep = 2 (m —1)cotf - T (1.15)
2¢pe = — [2m (2m — 3) 4 1 4-cot®8] § + cot 7 - §

We will show that the expressions for the strains (1.12) for values
of €,.(6) given by (1.15) (and consequently the expressions for the dis-
placements (1.13) to (1.14) as well) are general expressions, provided
the variables are separable and the material is incompressible. To do so
we substitute (1.12) into conditions (1.7). After eliminating ep by
means of the condition of incompressibility, we obtain

(,=e,” 1+ 2 cotle, —cotbey’ — 2epy’ — 2 (m—1)e, - 2(m —2)en —
—-2cotlegy =0

Xyz=cot (e, | ¢) —dm(m-—1)c, i 2meyg — 2 (Zm - 1) cotbepy - 0
Xy=e, + e —22m—1)epy -+ 2me, —bm(m —1)e =0

Xy=(2m—1)e,  — ey’ -I- 2m cotl (e, — en) — 2epn - 0 (1.16)

The system of Equations (1.16) is equivalent to
Yi=—X, 4+ Xgcot - X/ -0, Yg= X, 2m-—1)X,cotl ©
Vo= —Xg 4+ 2m—1)X, =0, N, -0

Tt can be verified that the following identities hold:
2mY ==Y, - Y, 2m (Yo Vi) = (A atgly

The system of equations Y, =0 (i =1, 2, 3) is therefore equivalent

to the equation Y; = 0. Consequently, the system (1.16) is equivalent to
the equations Y, = 0 and X, = 0. In expanded form the equation Y, =0

has the form
2(nl~—1)cot9€¢'%~[2(n2~—-1)4-(2nl——1)cot28]0¢»d—cotUmK—

— 11 (2m — Dcot? 0] ey -~ O (1.17)

Integrating (1.17) and making use of the equation X, = 0, we [ind

that
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ey = Ccos 0sin~2n110 - 2 (m — 1) ey — (2m — 1) (2m — 3) cos Hsin—2m+16 X
o}
in2m—2 646
% 08 Co SN (1.18)
2epy = — C cos 20 sin—220 4 ¢,/ — (2m — 3) cotle, + (Zm — 1) (2m — 3) X
[
X cos 20 sin—0 e, sinm— 4dp
0

where C is a constant ot integration.

Now consider the third equation ef (1.15) as an equation in [. Selv-
ing this equation and eliminating [ in the second and fourth equations
of (1.15) by expressing it in terms of e , we obtain expressions for eg
and epg identical with (1.18). This substantiates the statement made
above concerning the generality of Formulas (1.15) and (1.13) to (1.14).

We shall define sl.j(e) and s(8) as quantities which depend only on 8
in the expressions for the stress deviator °ij' and the mean pressure o

oif =si; B)R%,  o=s(B)R? (1.19)
Equations (1.2) can then be written in the form
8ij = AgrTley; (1.20)

where (1.21
g% = 2_ l(er — 69)2 -+ (0 — e¢)2 + (eo — er)?] + 4cno?, I'=g() R~

With the aid of (1.19) we can write the equations of equilibrium
(1.3), (1.4) in the form

Spe’ - cotOspe — (o + Se) — 25 =0 (1.22)
s" - 8¢’ + Spe + cotf (sg — ;) = 0
The first of the equations expresses the "mean pressure” s in terms
of the "components of the stress deviator"s .. Eliminating s from the
second equation, we obtain an equation which contains only Sij
Spo” + cot Ospe” 4 (1 —cot20) spo + so” — 8" + 2 cot O (sp — 8¢) = 0 (1.23)

Substituting Formulas (1.20) into Equation (1.23) yields
g¥ L epy” - cot Yepe” + (1 —cot®0) epg+ " — €,/ + 2 catl (eg — e,)] +
+(n—1) ge3 2ad’en” + (10— 2) &"F - gg" + cot fgg] ere -+
Vg teo e -0 (1.26
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If we now substitute into (1.24) values of e, given by (1.15) we ob-
tain a nonlinear ordinary differential equation of the fourth order in
the function ((6)

Ut = (1.25

Herell denotes the appropriate differential operator. The boundary con-
ditions (1.5) mean that

sro == 0), So--s =0 w1 §g=1nn (1.26)
Eliminating s with the aid of the first equation of (1.22), we obtain
TSy~ 5,720 at 0 =1pm (1.27)

srg = 0, SR

or, after substituting Formulas (1.20)
eno = 0, ero’ - eg—e, =0 at 8 —1ng (1 .28)

If we now substitute values of e, given by (1.15) into (1.28) we ob-
tain the following boundary conditions for the function ((8):

(1.29)

oA 2m@2m -3))1E=0, U--2@2m*—dm--4)L =0 at 0=—1ux
Also, from the condition that ug = 0 when 8 = 0 we have that

L=U at 8=0 (1.30)

Viith the aid of the {irst equation of (1.22) condition (1.6) can be
reduced to the form
T2 p
% [sresin O 1+ 3 (s + s,) cos 8] sin 8d6 = - (1.31)
If we substitute (1.20} and (1.15) into this expression we obtain the

condltion

,..2 )
oy \‘ﬁ*q lepasin -1 3 ey -1 o) cos 0] sin Gdf - %T (1.32,
b o

Thus the problem has been reduced to one of finding the function {(8)
which satisfies the ordinary fourth-order differential equation (1.25)
and the conditions (1.29), (1.30) and (1.32).

For u = 1 Equation (1.25) 1s linear and easily integrable. Tn this
case conditions (1.29), (1.30) and (1.32) select from the general solution
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the function {(8) corresponding to (1.9). If u # 1, Equation (1.25) be-
comes an extremely complex nonlinear differential equation which it was
found impossible to integrate. However, for the present purposes it will

be sufficient to carry out an analysis of the dependence of the solution
to the problem (1.25), (1.29), (1.30), (1.32) on parameters.

We note that the left-hand side of (1.25) represents a homogeneous
function of order pin {, ', ..., ZIV. The boundary conditions are also
homogeneous, whilst in equalities (1.25), (1.29) and (1.30), the only
parameter of the problem to appear is p. Therefore, if g, = {,(8, u) is
some particular solution of the problem (1.25), (1.29), (1.30), then
{ =B{,, where B is an arbitrary constant, is also a solution of this
problem. The constant 3 can be found from condition (1.32)

B=D"w(5), DM =V

Consequently, the displacements are given by

up = D" (W)leotOLy (0, 1) -+ Ly (% W) () B

N (1.33)
1o = (2m — 3) D (1) L, (0, p) (?,?1) R

The settlement of points on the boundary of the half-space is expressed
by

P m —_—
w(Ey) = —uwl_==c@ () rmt r=VaE Ty (139)
z \

c(w) =— 2m—3)[xD (W] "Ly (/2, p), c(1) =1/4n

Here c(n) is a constant dependent only on p. Expression (1.34) can be
rewritten as
P

Acbur =
r2e

(1.35)

2. Penetration of a die into a half-space with power-law
strain-hardening. Suppose that a rigid die is pressed without friction
into the half-space z > 0. We shall assume that the properties of the
material are defined by Equations (1.1) and (1.2). The problem is to
find the settlement of the die and the pressure distribution over the
area of contact S. The settlement of points on the area of contact is

w(z, §) = oz + By + wy — ¢ (z, ¥) (2.1)

where z = — ¢(x, y) is the equation of the surface of the die at the
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moment of contact with the half-space, ax + By + w, is the unknown rigid-
body displacement.

In order to derive an approximate solution to this problem we use the
method suggested by Arutiunian [1] and apply the principle of addition
of "generalized displacements" w. Then, denoting the pressure on the
area of contact by p(x, y) and making use of Formula (1.35), we obtain
for p(x, y) an integral equation* analogous to the equation in the cor-
responding plane prbblem [1]

P (1, 1) dxidy = Ac—byt (l‘
— = ) (2.2)
(SSS) Ve—al+G—u?) "

in which the function w(x, y) is given by (2.1). In order to find the
constants a, P and w, we have the equations of equilibrium of the die

\§ pdzdy = P (2.3)
{8
\Spydedy =p.,  § podedy = — 1, (2.4)
s 9

where P, M_, M_ are the given force and moment components applied to the
die. If the die has a smooth shape, then in order to determine the value
of S we apply the condition that the pressure vanishes at the boundary
of the area S.

If an axially symmetrical die is pressed into a half-space by a force
P, then the function w(x, y) in {2.2) is replaced by the function

w(r) = w, — () (2.9)

and only (2.3) is retained from conditions (2.3) and (2.4).

Equation (2.2) is a linear Fredholm integral equation of the first
kind with kernel having a point of non-essential singularity (1 <2 -
u<2).

It is interesting to note that an equation analogous to (2.2) is

* If the area of contact of two bodies with different constants Al, A2
and the same power U is sufficiently small the absolute term in Equa-
tion (2.2) is replaced by the function

fe (A7 4 7T [az - By - wo — @1 (7, ¥) — @ (z, Y
where z = ¢y (x, ¥), 2z = -~ Qz(x, y) are the equations of the surfaces
of the bodies at the moment of contact,
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obtained in the problem of the penetration of a rigid die into a non-
homogeneous elastic half-space with a Young's modulus
E=E_z" n, E,, = const (PR

and with a Poisson’'s ratio v = 1/(2 + n); in this case [5]

p (%1, ) deidys
& Ve—alP+y—w?

T — TW (=, y) (7 == const) (2.6)

Making use of this analogy, we can formulate the following result.
Suppose that a die with a flat base is pressed into a half-space with a
force P. Then the absolute terms in Fquations (2.2) and (2.6) are the
constants AcMw " and yw, respectively. We define p,(x, y) as the solu-
tion of Equation (2.2) with an absolute term equal to unity. Then the
pressure under the die in the case of a half-space which strain-hardens
is given by

Pz, y) = Acrwpy (4, Y)

and in the case of a nonhomogeneous elastic half-space (when n =1 - ),
by

p(z,y) = Twp1 (2, Y)

If we now eliminate the constants Ac"uwou and yw, in terms of P with
the aid of (2.3), then in the case under discussion the laws governing
the pressure distribution under a die pressing on a strain-hardening half-
space and under the same die pressing on a nonhomogeneous elastic half-
space (n =1 — p) are identical. Note, however, that the equations re-
lating the settlement w, with the force P are different.

In [5] Nostovtsev has derived a solution to Equation (2.6) for a die
elliptical in plan with a polynomial absolute term (a generalization of
Shtaerman’s theorem for a homogeneous elastic material). lle has also de-
rived a solution for a circular area of contact.

Let us consider the penetration of a die with a plane elliptical base
under the action of a force P. faking use of the results of [5] we find

that

2—p)P gt T f o Sin o/ 2a1%p o -
Py =G (1-5—5F) P = dems SUZRIBETY i 0.7)

where b, a are the semi-axes of the ellipse (a <)
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/2
- da 4 a? .
K = e =1 — = 2.8

§ (VT —sint o) k bl) (2-8)

In particular, for a die with a plane circular base (a being its
radius)
—wP 1

P = 2n S A e

) P = Aer g—;%% we (2.9)

If u=1, Formulas (2.7) become the corresponding well-known formulas
for the case of a homogeneous elastic material. Note that the pressure
distribution (2.9) is analogous to the pressure distribution in the
problem of the penetration of a rectangular die under conditions of
plane deformation [1].

In the case of an axially-symmetrical die under the action of a force
P, we have, on the basis of the results in [5], that

_ MWl v@ (W | ‘
p0%4u~p—mn [W*ﬂwz_gwhﬂme (2.10)
, [w* ()} dv ,
P (#) = wy? u*‘} T (2.11)

If the die has a smooth shape, then p(a) = 0 and consequently
P(a)=0 (2.12)

Equation (2.12) establishes the relation between the radius a of the
area of contact, the penetration of the die w; and the strain-hardening
power p. Equation (2.3) gives one further equation relating 2, w,, P, 4
and .

Evaluation of the integrals occurring in-(2.10), (2.11) for some dies
of practical interest such as conical, spherical, parabolic dies is
difficult in view of the power u of the function w(r) in (2.11). In
order to facilitate the evaluation of the integrals we make the approxi-
mation of expressing the function f(r) = »*(r) as a polynomial.

Consider the case of a Jie with a reasonably smooth shape. “e shall
suppose that the function ¢(r) has continuous first and second deriva-
tives within the range [0, 1], where I > a. Then the function f(r) has
the same property. Consider the function A(¢) = £ ¢), which is cony
tinuous within the range [0, 12]. By the theorem of ieierstrass we can
approximate to this function to any degree of accuracy by the
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polynomial*
k
g(t)= 2 ait'
i=0

Ve can then approximate to the function f'(r) by means of the poly-
nomial

k
q(r*) = 2 a;r?t
i=0

which contains only even powers of r. It is then easily seen that the
polynomials
k
ai 21 |4
Q(r)= ZWT““T/ (0) r + wy#
0 (2.13)

k
0 (r) = 2 grag ¥+ 7 (0)

are approximations for. f(r) and f'(r), respectively, to an accuracy pro-
portional to the accuracy of approximation of the polynomial q(r?) for
the function f'(r). It can easily be verified that the value of the
pressure found from these approximations is very close to the true value.

Substituting (2.13) into (2.11), we obtain

k
_oow YA T(—pp aibi 0i.
V() =w + S ras g/ Q6 Z;zmu +2
po— L il
P2 (t—p24- 0 —pR24i—1) . (A —p2 1) (1 —p2)
— 1
N e SN2 VA T(A—p/2) dt :
pir) = — e RREE b O gt
-]
1 i aibia2i+l } l2i+ld[
A et (2i~:~2)& (12— p2)*2

)

where p = r/a, M(x) is the gamma-function. The second integral in the

* For such a polynomial we could take [6]
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expression ifor p(r) can be integrated by parts; we have

i N
S 21, . (1 - 2)1_1%/2[ i ‘
Se—epr T U T [—proitz—1 |
2ip?
CRFETDerE e T
(2i)11 ptt
(=R -2 (—p 2R 23— p e+ D)

|
-

and the first integral in the expression for p(r) must be integrated by
a tabular method. In the case of dies which do not come to a point at

r =0, f'(0) = 0 and the term containing the first integral in the ex-
pression for p{r) disappears. Condition {2.12) enables us to express the
radius 2 of the area of contact in terms of the settlement of the die w,.
Condition (2.3) gives

P = Ac+ (p*)h(wm M)

Note that the unknown quantity c¢(u) (constant for a given material)
appearing in the relation between the force and the settlement of the
die, can he found from penetration tests with any single die.

Sometimes penetration tests on solid bodies are used for the experi-
mental determination of the mechanical properties of a material. Vith the
aid of such experiments the solutions derived in this paper enable the
strain-hardening power to be determined. For instance, if vaiues are
known for the force and settlement for two penetrations of a die with a
plane circular base, then Formula (2.9) gives the following equation for
0

H

by,

Py ( wor\"*

oz

In the case of a cone or sphere, the corresponding equation is (2.12),

or the equation
Py B (wo,p)
Py 7 h{we, )

Finally, note that the results given above can be applied to the case
of steady and quasi-steady creep, which is described by the equations of
the yield theory [7] (assuming incompressibility of the material and a
power-law relation between the intensity of shear-strain rate and in-
tensity of shear stress).

3. Penetration of a die into a balf-space with nonsteady
creep of the material. "“e shall assume that the creep of an incom-
pressible material is described by the ejuations proposed by
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Rabotnov [8]:
4
AT (e (1) = o () — | K (¢t — )04 (1) dv (3.1)

0

flere t is the time (for brevity the three-dimensional variables have
been discarded}, Gi" is the stress deviator, [ is the intensity of shear
strain, 4 and u are constants of the material (0 < p <1}, K(¢t - 7) 1s
the relaxation kernel.*

If the application of the load 1s instantaneous, the material at the
moment t = 0 is governed by Fquation (3.1) and behaves as 1f it were
subject only to {power-law) strain-hardening.

Consider the quasi-statical proolem of a concentrated force P(t)
applied normally to the boundary of a half-space. Since the operator in
the right-hand side of (3.1) is linear and homogeneous, and since the
three-dimensional variables appear in {3.1) as parameters, all the ideas
of Section 1 concerning the dependence of the unknowns on the radius R
still hold and can be applied to the present problem. In addition to the
angle 9, however, the time t must also be included in the arguments of
functions I, e;., g, Sije Solving Fquations (3.1) for Uij' and making
use of (1.20), we obtain

t
i (0, 1) == Age—1(8, t)ey; (0, 8) + S N(t—1) Age—1(0, T)ey; (B, T)dr (3.2)

0
where N(t - 1) is the resolvent of the kernel K(t ~ t).

In order to obtain an equation for the function (8, t) we substitute
Formulas (1.15) into (3.2) and then substitute the resulting expression
for s;; into the Jdifferential equation (1.23). Substituting (3.2) into
(1.23) and taking the differential operator on the left-hand side of
Equation (1.23) under the integral sign, we obtain a homogeneous Volterra
integral equation

!

w(l, ) =\ N(t--1)u (8, dr =0 (3.3)
in the function u(®, t) = U, where U is the differential operator of
Equation (1.25). It follows from (3.3) that u(8, t) =0, i.e. the func-
tion [(8, t), satisfies the ordinary differential equation (1.25).

* Without prejudicing the theory that follows, the kernel K(t — 1) can
be replaced by the more general form K(t, T), and the lower limit of
integration can be replaced by the constant ty.
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We now substitute (3.2) into the boundary conditions (1.27). In this
way we obtain two homogeneous integral equations of the same type as
(3.3): the first in [q“"‘leRe]Q::w/z, the second in [g”"l(eﬂe' + eg =
e¢)16==w/2' It follows from these equations that the function 7(8, ¢)
satisfies the boundary conditions (1.29). The boundary condition (1.30)
evidently still applies to the case under discussion. Substituting (3.2)
into condition (1.31) we obtain

. j\r (t -— T) Fa (T) d’(’ = P-g_.)

A

)

DA

Solving this integral equation for v(t) = V({] we find that

H
VL] = R%(i ~L)yP (1), <L?1(?) = S A{t—1)y(v) dt) (3.4)

[}

Thus the function ((@, t) satisfies the same differential equation
(1.25) and the same boundary conditions (1.29), (1.30) as in the corre-
sponding problem with strain-hardening which follows a power-law. Condi-
tion (3.4) differs from (1.32) only in the different value of the right-
hand side. Note that the time t appears in the equation and in the con-
dition for the function [(8, t) as a parameter. Consequently, the solu-
tion of the problem of a concentrated force can be found from the solu-
tion of the problem of Section 1, by replacing the force P by the
quantity (1 - L)P(t).

We proceed now to the problem of thie penetration of a rigid die into
a half-space, the properties of the material of which are described by
Equations (3.1). We shall assume that there is no friction on the area
of contact. As in Section 2, applying the principle of superposition of
the "generalized displacement” w”, we obtain the following expression
for determining the pressure under the die:

Aoty g, D (3.

24y

R\ (1= L) pizy, yn. Ddmidy,
W Ve ==l (v — ni?)
Here (S,) is the area of contact; the function w{x, y, t} is given by
(2.1), in which the quantities a, P, w,, determined from tie conditions
(2.3), (2.4), are, in general, functions of time. Fquation (3.5) is
equivalent to the following two equations analogous to the corresponding
equations in the plane problem [2]:

¢
w{r, ¥, 1) - B K{t - D, y, 1)dr==uw(x, ¥, 1) (3.6}
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3. Py b dndy = Acro (r, y, 1) (3.7)
(%ﬁVu—-ﬁV+%y—ym)'

flquation (3.6) is a Volterra integral equation of the second kind (x,
y occur in this equation as parameters).

FEquation (3.7) is a Frecholm equation of the first kind (the variable
q q

t occurs in (3.7) as a parameter). The constant c(p) can be determinel
by short-duration penetration tests with a die.

Consider the penetration into a half-space of a Jie with a flat base
under the action of a force 7(t). In this case the area of contact is
fixed and w = wy”(t) is independent of x, y. It follows from (2.6) that
@ = o(t)

t
0y (1) = wy (1) + Y V(L — Vg (Ve (3.8)

i

is also independent of x, y. Dut then

p@, g ) = py (@, y) lemroy (1) (3.9)

ere pl(x, y) 1s the solution of Equation (3.7) when the absolute
term is unity. After eliminating Ac M (t) by expressing it in terms of
P(t) with the aid of (2.3), we obtain the pressure distribution

PG Y, ) = L) pu(x, ) m Pl ) f/-fdy)'l

1D}

which coincides with the pressure distribution for the case of power-law
strain-hardening (or for the case of instantaneous penetration). Thus
for a Jie with a flat base under the action of a force, creep has no
effect on the law governing the pressure distribution under ihe iiie.
This result is completely analogous to the corresponding result for the
plane problem [2]. Thus, for a Jie with a plane elliptical base the
pressure distribution is given by the first of Formulas (2.7), in which
I is considered as a known function of time; tlen in order to find the
relation between the force .” and the settlement w; the quantity wou in
the second of Formulas (2.7) should be replaced by o, as given by (3.9).
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